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A B S T R A C T

Object manipulation is the most common form of interaction in virtual reality. We introduced an efficient and
ergonomic Big-Arm method to improve the efficiency and comfort of manipulating distant objects in virtual
reality. We prolong the upper arm and forearm lengths according to the maximum distance of the manipulation
space and construct the linear mapping between the real and virtual elbow angle, which makes manipulation
easier to control and more efficient. We propose an optimized elbow angle mapping to further improve
the efficiency and comfort of distant object manipulation. Two user studies were designed and conducted
to evaluate the performance of our optimized Big-Arm method. The results show that our method achieves
significant improvement in efficiency, ergonomic performance, and task load reduction for manipulating the
distant object (distance ≥6 m) compared to the state-of-the-art methods. At the same time, our method exhibits
superior usability.
1. Introduction

Virtual object manipulation is one of the fundamental interactions
in virtual reality (VR) and has been studied for a long time. Researchers
have devoted themselves to finding better ways to manipulate (trans-
late, rotate, and scale) virtual objects (Frees and Kessler, 2005; Jacoby
et al., 1994). Distant virtual object manipulation has more challenges
because the user cannot reach the object directly (Poupyrev et al.,
1996). Therefore users have to use other tools to catch the objects,
such as the casting-ray-based method (Bowman and Hodges, 1997), in
which objects are bound on the tip of the cast ray. By pointing the ray
in a particular direction and pressing related buttons to change the ray
length, users can translate the objects to their desired positions. The
Go-Go type methods, like Go-Go (Poupyrev et al., 1996), 3D cursor (Li
et al., 2015, 2018) were proposed, which manipulate the distant virtual
objects more directly. However, they still have some disadvantages.

As shown in Table 1, casting-ray-based techniques prove less ef-
ficient when it comes to relocating virtual objects over substantial
depths, mainly due to the considerable time required for adjusting the
ray length. On the other hand, in methods resembling Go-Go, users
frequently find themselves extending their arms for an extended period,
especially when objects are positioned near the boundaries of reachable
space. Such prolonged motion can lead to user fatigue. Hence, the need
for a novel method to address these challenges becomes evident.

We considered three design requirements to improve object ma-
nipulation’s efficiency, accuracy, and comfort. First, to improve the
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efficiency of the interaction, the user should be able to manipulate
the object with just one smooth action. Previous Go-Go-like methods
manipulate objects with a straight rod, which leads to a two-step action:
pointing in the direction and then adjusting the length to catch. The
two-step action generally takes more time than a single action. So, we
intend to design a method in which users can catch the objects with
only one smooth action. Second, the visual feedback of the method
should provide a comprehensive cue for the users to better mentally
map their real arms to the virtual arms movement, reducing the control-
ling difficulty and improving the manipulation efficiency (Rosenbaum,
2009; Franklin and Wolpert, 2011). Generally, to control movement,
the nervous system must integrate multimodal sensory information.
However, in a VR system, users can only see their virtual ‘‘arms.’’
If the virtual ‘‘arms’’ cannot provide comprehensive visual feedback,
users may not successfully control motor movement, which is crucial
to interacting with the objects. Third, the user’s movement should be
natural and ergonomic, especially for manipulating the object far away,
offering a low task load and considerable usability. Since there are
certain arm-moving areas that humans can feel comfort when applying
daily activities (Morrey et al., 1981, 2000; Montano Murillo et al.,
2017).

Following the three design requirements, we introduce an efficient
and ergonomic Big-Arm (EEBA) metaphor for manipulating distant
objects in VR. Using the tracked HTC Vive head-mounted display, the
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Table 1
Comparison for indirect and direct manipulation variants.

Method type Representatives Pros Cons

casting-ray-based Bowman and
Hodges (1997)

fast selection difficult ray length control,
long segmented trajectory

Go-Go type Poupyrev et al.
(1996), Li et al.
(2018)

intuitive length
control

two-step manipulation, tired
at a large distance, movement
mapping is hard to grasp
Fig. 1. EEBA metaphor. Using one additional tracker with the HMD and controller, the user’s arm is tracked and mapped into the virtual EEBA metaphor (represented with the
blue sticks and red spheres). With the EEBA metaphor, the user can grasp the faraway bottle on the bookshelf and translate it to the target position (marked with green dotted
outlines) efficiently and ergonomically.
controllers, and one HTC Vive tracker bound on the elbow joint (Fig. 1),
we capture the user’s arm motion (including shoulder, elbow, and wrist
motions). Inspired by the Giant walking (Abtahi et al., 2019), which
scales the user into a virtual giant for fast navigation, we then prolong
the upper arm and forearm lengths according to the maximum distance
of the manipulation space and construct the linear mapping between
the real and virtual elbow angle. Therefore the user can reach the whole
manipulation space and manipulate the virtual arm just like in life
due to the same mechanical linkage structure. The virtual arm length
remains constant during manipulation, so the user can easily predict
the object’s motion according to the bending of the virtual arm. In
order to further improve the efficiency and comfort of distant object
manipulation, we optimize the real and virtual elbow angle mapping.
We propose an empirical function model between the real elbow angle
and the object’s final position adjusting time and then conduct a
pilot user study to fit it. With the fitted model, we propose an opti-
mized ergonomic elbow angle mapping function, which enables users
to manipulate distant objects with a more comfortable arm position,
reducing manipulation time. We conducted two controlled user studies
to evaluate the performance of our method. The results show that our
method significantly improves efficiency and ergonomic performance
for manipulating the distant object (distance≥6 m) compared to the
state-of-the-art methods. Our method reduces the task load significantly
for manipulating the object at all tested distances and shows compa-
rable usability performance compared to the state-of-the-art methods.
Fig. 1 shows how our EEBA method works. The user is controlling the
EEBA metaphor to grasp the bottle on the top of the bookshelf and then
transport it to the target location (marked with green dotted outlines)
in the virtual environment.

The contributions of this paper are summarized as follows:

• We introduce a Big-Arm interaction metaphor, which provides
intuitive visual feedback, enhances users’ spatial awareness and
ability to control the virtual hand efficiently and improves ma-
nipulation efficiency.
2

• We propose an optimized virtual–real elbow angle mapping func-
tion, which improves the manipulation comfort and efficiency.

In the following, we first introduced the prior work on distant object
manipulation in Section 2. Then, we propose our EEBA method in
Section 3. Section 4 designs a pilot user study to fit our method model.
After that, we conducted two user studies to evaluate the performance
of our method in Sections 5 and 6. Finally, we conclude and discuss the
limitations and future work in Section 7.

2. Related work

Distant object manipulation has been studied for decades, and many
techniques have emerged and demonstrated their respective advan-
tages. Here, we divide the techniques into two categories: indirect
manipulation and direct manipulation, and then briefly discuss related
prior work. For a more comprehensive illustration, we recommended
readers to the survey paper (Mendes et al., 2019).

2.1. Indirect manipulation

The indirect manipulation method has the feature that the target
object’s motion is not directly mapped to the user’s hand movement.
Usually, they are connected by some tools, like rays, mirrors, replicas,
etc. One of the techniques is the Worlds in Miniature (WIM), which
provides a hand-held miniature representation of the virtual world. The
users can manipulate the inside tiny objects in their hands (Stoakley
et al., 1995). Pierce et al. introduced Sticky Finger, allowing distant
object selection using the thumb and index finger (Pierce et al., 1997),
and then allowing the manipulation in space. Another similar work is
the Voodoo Dolls (Pierce et al., 1999), which allows users to manipulate
remote objects with their copied dolls in their hands. Recent work
scaled down the whole virtual world to enable manipulation with
distant and occluded objects (Yu et al., 2019). Another Poros method
introduces a space proxy method (Pohl et al., 2021). By constructing
several marked spaces, the user can manipulate the distant objects in
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the space proxies nearby. Although these methods solve the problem of
distance, they break the spatial relation between users and virtual ob-
jects. For WIM and Voodoo Dolls, users have to switch their views a lot
when adjusting the positions of the objects in the virtual environment.

Another approach for moving distant virtual objects is the sliding-
based method. The method moves an object along a chosen plane/
surface by pressing on the trackpad (Sun et al., 2016). Then, the
extended sliding-based method introduces a fine adjustment phase to
map the 3d movement of the hand (Sun and Stuerzlinger, 2019).
However, the manipulation process becomes complicated since these
two methods need a predefined plane or a chosen surface in the virtual
environment.

Some approaches use additional tools to contact the target object
in order to maintain the positional relationship between it and the
user. The most commonly used tool is a ray. By emitting a ray to the
target object, the user can easily select the target and then manipulate
it (Mine, 1995; Bowman and Hodges, 1997; Liu et al., 2022). Based
on ray casting, the HOMER method is proposed to facilitate easier
control of the ray length by attaching the hand to the target object
on the ray and then linearly mapping the hand motion to the object
motion (Bowman et al., 1999). However, the farthest distance the user
can reach is limited by the length of his upper limbs, making it difficult
to move virtual objects to a distant target location in a single operation.
A velocity-based scaling strategy is applied to the ray length to increase
the manipulation efficiency (Wilkes and Bowman, 2008). Yu et al.
proposed a gesture-based remote object manipulation technique, Force
Push, which uses different gestures to control the object movement (Yu
and Bowman, 2018). However, its controllability and accuracy were
considered inferior to direct control. Yu et al. proposed the alpha cursor
method to select fully occluded target objects by cutting away virtual
geometries inside a clipping sphere (Yu et al., 2020). Recently, Li
et al. proposed vMirror, which enables distant or occluded VR object
manipulation with an interactive widget leveraging the reflection of
mirrors (Li et al., 2021). By placing the virtual mirrors in the scene,
users can select target objects, even occluded, by pointing rays at the
reflected images in the mirrors. These ray-based methods keep the
spatial relation between target objects and the users unchanged. They
are good at target object selection missions. However, when it comes
to object manipulation, the users have to control the movement of
the objects by indirectly changing the direction, length of the ray,
orientation, and location of the mirror or using the buttons of the
controller, which makes the manipulation inconvenient and inefficient.

The indirect manipulation method does not directly manipulate
the target object by hand motion, so there is a specific learning cost.
Although they can select the objects easily, some of the methods may
also suffer from inefficiency when moving virtual objects.

2.2. Direct manipulation

The direct manipulation methods map the target object’s motion
to the movement of the user’s hand. For distant objects, the most
direct idea of direct manipulation is to send the user to the nearby
region of the virtual object with the help of walking or teleportation
techniques (Bolte et al., 2011; Bozgeyikli et al., 2016). Then the user
can manipulate the object directly through hand movements. However,
teleportation needs additional user viewpoint translation, which leads
to an extra task load for users, and it is also inefficient. To address
the problem, gaze-supported object manipulation methods have been
widely studied (Chatterjee et al., 2015; Velloso et al., 2015; Voelker
et al., 2020; Yu et al., 2021). For example, Yu et al. proposed gaze-
supported techniques for distant object manipulation, allowing users to
select objects with their eyes and then manipulate them by hand (Yu
et al., 2021). The combination of gaze and hand inputs helps avoid
unnecessary viewpoint teleportation and can be helpful for large en-
vironments with distant target objects (Turner et al., 2011, 2013).
3

However, it also suffers disadvantages, such as that users have to focus
their eyes on the target objects, which may increase eye strain during
the manipulation tasks or cause loss of virtual scene context. Further-
more, the joint interaction of the eye and hand limits the manipulation
accuracy and efficiency.

Another direct manipulation method of distant objects is by hand
in mid-air. It focuses on manipulating distant objects in comfortable
hand poses. Feuchtner et al. proposed the Ownershift technique, which
allows users to interact with overhead target objects with their hands
placed down at a comfortable position (Feuchtner and Müller, 2018).
The Erg-O technique remaps the nearby virtual space and amplifies
movement to help users reach the boundary area at a natural reaching
area (Montano Murillo et al., 2017). These two methods shift the user’s
hand position to some comfortable location and reduce the user’s task
load. However, since the hand comfort space is similar in size to the
interactive virtual space in mapping, they are not good at long-range
object translation interaction.

To directly manipulate distant target objects, many approaches
amplify the virtual arm’s length to reach distant objects. A typical
method is the Go-Go technique, which grows the vector along the hand
direction to reach and manipulate distant objects (Poupyrev et al.,
1996). Then, Li et al. introduced the Linear Offset method, a Go-Go
variation that optimized the mapping and outperformed the former (Li
et al., 2015, 2018). Wentzel et al. proposed a configurable Hermite
curve function to help maintain body ownership when amplifying
the motion of the hands (Wentzel et al., 2020). Further, Feuchtner
et al. investigated how appearance, realism, and connectivity of the
stretched long arm contribute to the perception of ownership in AR
applications (Feuchtner and Müller, 2017), and Dewez et al. studied
the impact of using a dual body representation during both close and
distant manipulations (Dewez et al., 2022). These methods work on
amplifying the virtual hand positions, focusing mainly on new mapping
functions to the original Go-Go metaphor. The limitation of these
methods is that they magnify the length along a straight line to achieve
the goal of changing position, which ignores the fact that the motion of
the human arm is a linkage motion that rotates around the elbow joint
and is therefore not intuitive for the control of the hand motion.

Our EEBA method is also a direct manipulation method for distant
objects. The structure of our EEBA metaphor is a linkage, which is
the same as the real human arm. This similar structure brings several
advantages. First, the same structure means the same control method.
Users can quickly grab the key points of controlling the metaphor.
Second, the visual feedback of the metaphor is also in line with the
real arm. When users extend their real arms, the virtual arms also
extend, and vice versa. This ensures instant and comprehensive visual
kinematic feedback for the users to construct a reflex-based controlled
movement (Schmidt and Wrisberg, 2008). We intend to propose an
efficiency-improved and ergonomically friendly manipulation method.

3. Method

This section describes the details of our EEBA method based on the
three design requirements above. First, we propose the basic Big-Arm
prototype and then introduce the optimized ergonomic elbow mapping
function to improve its comfort and efficiency.

3.1. Basic Big-Arm

Based on the first two design requirements, to offer a comprehensive
visual cue to the user, we define the Big-Arm metaphor as a prolonged
virtual fixed-length arm divided into an upper arm and a forearm like a
real arm. As shown in Fig. 2, (a), we abstract the human arm as a link
structure with a six-tuple (𝑠, 𝑒, 𝑤, 𝑢, 𝑓 , 𝛽), where 𝑠, 𝑒, 𝑤, represent the
joint of the shoulder, elbow, and wrist, 𝑢, 𝑓 represent the linked upper
arm and forearm, 𝛽 represents the real elbow angle. Analogous to a real
arm, our Big-Arm can also be represented with a six-tuple (𝑠′, 𝑒′, 𝑤′,
′ ′ ′
𝑢 , 𝑓 , 𝛽 ), representing the virtual shoulder, elbow, wrist, upper arm,
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Fig. 2. (a) The basic structure of the virtual BigArm. 𝑠(𝑠′), 𝑒(𝑒′), 𝑤(𝑤′), 𝑢(𝑢′), 𝑓 (𝑓 ′), 𝛽(𝛽′)
represent the shoulder, elbow, wrist, upper arm, forearm, and elbow angle of the
physical (virtual) arm. The shoulder locations are aligned. (b) The virtual BigArm
metaphor can only cover the green range if we apply a 1:1 elbow angles mapping.
We want to reduce the minimum value of the virtual elbow angle 𝛽′𝑚𝑖𝑛 to reach the
residual range marked in red.

forearm, and elbow angle, as the same meaning as the corresponding
parameters of the real arm. When the user wants to stretch the virtual
arm, he/she only needs to stretch his arm in the real world, and vice
versa. The fixed-length limbs provide visual feedback for virtual hand
movement. Just as in reality, by observing the arm movements, the user
can perceive where the hand will be. Furthermore, the kinematic form
of the virtual arm is similar to that of the real arm, both of which are
joint-rod structures hinged at the elbow. These designs help the user
understand and control the virtual arm’s movement and facilitate the
user’s planning of the virtual arm’s movement path.

In order to obtain the parameters of the real arm, the HTC Vive Pro
2 HMD, one handheld controller, and one HTC Vive tracker are used
(Fig. 1). 𝑠 is calculated from the user’s head position and orientation
tracked by HMD, the preset user’s neck length, and shoulder width. 𝑒 is
tracked with the HTC Vive tracker bound on the elbow of the user, and
𝑤 is captured with the handheld controller. 𝑢, 𝑓 , and 𝛽 can be calculated
with 𝑠, 𝑒, and 𝑤.

We construct the virtual arm (𝑠′, 𝑒′, 𝑤′, 𝑢′, 𝑓 ′, 𝛽′) based on the real
arm (𝑠, 𝑒, 𝑤, 𝑢, 𝑓 , 𝛽). The shoulder 𝑠′ is fixed at the same position as
the real shoulder 𝑠. The direction of the real and virtual upper arms are
the same. Then we need to determine the virtual upper arm length 𝑢′,
the virtual forearm length 𝑓 ′, and the virtual elbow angle 𝛽′. Finally,
𝑒′ and 𝑤′ can be calculated according to them.s

To calculate 𝑢′ and 𝑓 ′, we set the total length of the virtual arm the
same as the maximum distance 𝐷𝑚 = 𝑢′ + 𝑓 ′ associated with a specific
task. For example, in Fig. 1, 𝐷𝑚 is set as the maximum length of the
virtual room. Then, divide the virtual arm proportionally to the user’s
forearm and upper arm (𝑢′∕𝑢 = 𝑓 ′∕𝑓 ).

To calculate 𝛽′, the most intuitive mapping method is the 1:1
mapping (𝛽′ = 𝛽). As shown in Fig. 2, (b), When the real arm is bent to
the minimum elbow angle (𝛽𝑚𝑖𝑛), the virtual Big-Arm can only reach the
boundary of the green area (𝑤′

1) with the 1:1 mapping, resulting in the
inability to manipulate objects in the red region close to the user, which
4

is constructed by setting the same distance ℎ from the real wrist 𝑤1 to
the real upper arm. To make the virtual Big-Arm cover the entire region
(red and green, 𝛽′ ∈ [𝛽′𝑚𝑖𝑛, 180

◦]), we need to construct a linear mapping
between the virtual and the real elbow angle. We align the maximum
and minimum values of the virtual and real arm elbow angles and then
map the intermediate range of angles by linear interpolation. Following
the above designs, we can calculate 𝑢′, 𝑓 ′, 𝛽′ as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑘 = 𝐷𝑚∕(𝑢 + 𝑓 )
𝑢′ = 𝑘𝑢, 𝑓 ′ = 𝑘𝑓
𝛽′𝑚𝑖𝑛 = 𝑎𝑟𝑐𝑠𝑖𝑛 𝑓𝑠𝑖𝑛𝛽𝑚𝑖𝑛

𝑓 ′ = 𝑎𝑟𝑐𝑠𝑖𝑛 𝑠𝑖𝑛𝛽𝑚𝑖𝑛
𝑘

𝛽′ = 𝛽−𝛽𝑚𝑖𝑛
𝜋−𝛽𝑚𝑖𝑛

(𝜋 − 𝛽′𝑚𝑖𝑛) + 𝛽′𝑚𝑖𝑛

(1)

Here, 𝑘 represents the prolonged ratio between the real and virtual
arms. Row 3 shows how to calculate the minimum virtual elbow angle,
which is inferred from the equation (ℎ = 𝑓 sin 𝛽𝑚𝑖𝑛 = 𝑓 ′ sin 𝛽′𝑚𝑖𝑛). Row 4
gives the linear mapping function. When 𝛽 = 𝜋, 𝛽′ = 𝜋. When 𝛽 = 𝛽𝑚𝑖𝑛,
𝛽′ = 𝛽′𝑚𝑖𝑛.

3.2. Elbow angle mapping optimization

We optimize the elbow angle mapping according to the third design
requirement. First, we reset an ergonomic elbow angle range and then
propose an optimized elbow angle mapping function according to the
performance of the basic Big-Arm method.

3.2.1. Ergonomic elbow angle range
An ergonomic-friendly design means the user can access any ac-

cessible virtual location with a relatively comfortable real-world arm
pose (Montano Murillo et al., 2017). According to previous studies,
people can accomplish most of the activities of daily living with 100 ◦

of elbow flexion (from 50◦ to 150◦) (Morrey et al., 2000, 1981). Beyond
this range, the user’s arm is prone to discomfort or fatigue.

Based on the above findings, we reset the real elbow angle mapping
range to 𝛽 ∈ [50◦, 150◦]. When the user’s elbow angle reaches minimum
value 𝛽𝑚𝑖𝑛 = 50◦, the virtual elbow angle also reaches the minimum
𝛽′𝑚𝑖𝑛, calculated with Eq. (1). When the user’s elbow angle reaches
maximum value 𝛽𝑚𝑎𝑥 = 150◦, the virtual elbow reaches the maximum
𝛽′𝑚𝑎𝑥 = 𝛽𝑚𝑎𝑥 to keep the user’s perception of boundaries consistent.

From Fig. 2, according to the Pythagorean theorem, the reach
distance 𝑑 of the BigArm can be represented as:

𝑑 = |𝑠′ −𝑤′
|

=
√

[𝑢′ + 𝑓 ′𝑐𝑜𝑠(𝜋 − 𝛽′)]2 + [𝑓 ′𝑠𝑖𝑛(𝜋 − 𝛽′)]2
(2)

Replace 𝑑 with 𝐷𝑚, 𝛽′ = 150◦ and 𝑘 = 𝑢′

𝑢 = 𝑓 ′

𝑓 , the prolonged ratio 𝑘 is
updated as

𝑘 =
𝐷𝑚

√

𝑢2 + 𝑓 2 +
√

3 ⋅ 𝑢 ⋅ 𝑓
(3)

3.2.2. Optimized elbow angle mapping function
We performed several informal tests on the basic Big-Arm prototype

by translating virtual objects to some target locations with different
user–target distances 𝑑𝑢𝑡. During the translation, we recorded the time
cost and trajectories of the objects. Typical time cost and trajectory
data for translating three objects located at different distances (𝑑𝑢𝑡 =
2 m, 4 m, 6 m) are shown in different colors yellow, blue, and green in
Fig. 3.

According to the results, we have two findings:

• The translating process of the object can be divided into two
stages. When the object is far from the target location, the moving
speed is fast since participants can ignore the accuracy require-
ment. When the object is near the target location, they have to
slow down to place the object accurately (Graham and MacKen-
zie, 1996). In the first stage, the object rapidly approaches the
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Fig. 3. The typical time costs and trajectory data of three objects with different 𝑑𝑢𝑡:
2 m, 4 m, and 6 m. 𝑑𝑜𝑡 represents the distance between the object and the target
location. The total length of the virtual arm is set as 𝐷𝑚 = 6.5 m in the tests. The Time
Bar shows the time costs for the coarse approaching stage (𝑡1) and the fine-tuning stage
(𝑡2).

target position with a time cost of 𝑡1. The distance between the
object and the target 𝑑𝑜𝑡 rapidly decreases. The second stage of the
fine-tuning process starts when the object is moved for the first
time to the area near the target (we set 𝑑𝑜𝑡 ≤ 0.02 m in our tests).
In this process, the user decreases the hand-moving speed to make
the manipulated object coincide with the target. Due to the inertia
of the hand movement, the trajectory of the fine-tuning process
oscillates until the user presses a button to confirm the end of the
translation. The time cost of this stage is noted as 𝑡2.

• Compared to 𝑡1, when the distance from the target location to
the user (𝑑𝑢𝑡) increases, 𝑡2 changes drastically, first decreasing
and then increasing. This is because it is easier for the user to
manipulate when the user’s elbow angle is around 90◦ (𝑑𝑢𝑡 = 4 m),
and the greater the deviation (𝑑𝑢𝑡 = 2 m, 6 m), the more difficult it
is to manipulate (Morrey et al., 1981, 2000). When users stretch
or bend their arms significantly to manipulate the virtual objects,
the increasing 𝑡2 reduces the manipulation efficiency.

Based on the above findings, reducing 𝑡2 time in the fine-tuning
stage is necessary to improve the manipulation efficiency when 𝑑𝑢𝑡 is
small or large. The main idea of our elbow angle mapping optimiza-
tion is to construct a new mapping between 𝛽′ and 𝛽 to reduce the
fine-tuning process time 𝑡2. The construction process consists of two
steps.

The first step is to model the relationship between 𝑡2 and 𝛽, with
the pilot user study results when applying the basic Big-Arm method.
According to the second finding above, 𝑡2 first decreases and then
ncreases when 𝛽 increases. We approximate this underlying trend
sing a quadratic function (Eq. (4), left half). Another factor that may
nfluence 𝑡2 is the distance from the target to the user 𝑑𝑢𝑡. In Fig. 3,

when 𝑑𝑢𝑡 increases from 4 m to 6 m, 𝑡2 increases more than when 𝑑𝑢𝑡
ecreases to 2 m. The reason is shown in Fig. 4. 𝑂 is the eye position of
he user, 𝑃1, 𝑃2 are two virtual objects with different distances (𝑑1 > 𝑑2)

from the user. 𝑇1 and 𝑇2 are the corresponding target locations for 𝑃1
and 𝑃2. 𝐼 is the image plane. Although the translating length in the 3D
space (𝛥) from 𝑃1 to 𝑇1 and 𝑃2 to 𝑇2 are the same, the projected path
lengths are different 𝛿1 < 𝛿2.

The user relies mainly on visual feedback (object–target projection
image) for object manipulation adjustments. In order for the user to
detect the difference between the object and the target position, a
sufficiently large image variation is required. In the second stage, the
5

Fig. 4. The projected translating path lengths 𝛿1 and 𝛿2 on the image plane 𝐼 of the
virtual objects 𝑃1 and 𝑃2 for the same path length 𝛥. The distances for 𝑃1 and 𝑃2 from
the user position 𝑂 are 𝑑1 and 𝑑2.

bject enters the area near the target. The further away the target is,
he smaller its projection change is and the more difficult it is for the
ser to discern the change, hence the longer the manipulation time 𝑡2.

For simplicity, we assume that 𝑡2 is linearly proportional to 𝑑.
So far, we model the relation between 𝑡2 and 𝛽 as:

2 = (𝑒1𝛽2 + 𝑒2𝛽 + 𝑒3) ⋅
√

𝑒4 − 𝑒5𝑐𝑜𝑠(𝑒6𝛽 + 𝑒7) (4)

he left half is the quadratic function, and the right half is a weighted
, which is inferred from Eqs. (1) and (2). 𝑒1 to 𝑒7 are undetermined
oefficients, and we will fit them with a pilot user study in Section 4.

The second step is to construct the new mapping function between
′ and 𝛽. Our Big-Arm metaphor enables the controlling of the virtual
rm by amplifying the real elbow angle 𝛽 to the virtual elbow angle
′. In the fine-tuning stage, the amplifying ratio 𝑑𝛽′

𝑑𝛽 can influence the
asiness of controlling the Big-Arm. The smaller the ratio, the easier it
s to control the Big-Arm, resulting in decreasing 𝑡2. So, we proposed
ur new mapping function as an integral function of 1∕𝑡2:

′ = 𝑎∫
1
𝑡2
𝑑𝛽 + 𝑏 ⋅ 𝛽 (5)

Where 𝑎, 𝑏 are coefficients related to the virtual minimum elbow angle
𝛽′𝑚𝑖𝑛. 𝑎 and 𝑏 can be calculated with the following equation group:

𝛽′𝑚𝑎𝑥 = 𝑎∫

𝛽𝑚𝑎𝑥

𝛽𝑚𝑖𝑛

1
𝑡2
𝑑𝛽 + 𝑏𝛽𝑚𝑎𝑥

𝛽′𝑚𝑖𝑛 = 𝑎∫

𝛽𝑚𝑎𝑥

𝛽𝑚𝑖𝑛

1
𝑡2
𝑑𝛽 + 𝑏𝛽𝑚𝑖𝑛

(6)

Since the minimum and maximum real and virtual elbow angles are
known, we can solve the equation group easily and get the coefficients
𝑎 and 𝑏.

4. Pilot user study: Fitting model

4.1. Overview and hypotheses

The pilot user study has two stages. In the first stage, we tested
the manipulation performance of the basic Big-Arm method to fit the
pending coefficients illustrated in Eq. (4). In the second stage, we
constructed our EEBA method using the fitted parameters and tested
its performance. The performance data collected from the two methods
were compared to validate the following hypotheses:
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Fig. 5. The scene layout in the pilot user study. Participants (the blue avatar) were
asked to translate the six white spheres on the ground to the target location, rendered
as a transparent green sphere. We set 8 target locations for each participant, and the
distances are 𝑑 ∈ {0.5 m, 1 m, 2 m, 3 m, 4 m, 5 m, 5.5 m, 6 m}.

H0-a. EEBA method is able to reduce the coarse approaching time
𝑡1 compared with the basic Big-Arm method.

H0-b. EEBA method is able to reduce the fine-tuning adjusting time
𝑡2 when the target distance is near the max manipulation distance.

4.2. Participants and apparatus

We recruited 8 participants (four males and four females, aged
between 22 and 29, 𝑀 = 24.875, 𝑆𝐷 = 2.09, all right-handed) with
normal vision (or corrected-to-normal vision by wearing glasses). Six
of them had experience using HMD VR applications before the study,
and none reported balance disorders.

Our system used an HTC Vive Pro HMD powered by a workstation
with a 3.8 GHz Intel(R) Core(TM) i7-10700KF CPU, 32 GB of RAM, an
NVIDIA GeForce GTX 3080Ti graphics card, and an HTC Vive tracker.
Before using the Vive tracker, we tested its positioning accuracy. We
bound the tracker to the arm of a static mannequin with movable
joints, which we posed in five poses and collected the position of
the tracker for each pose over 5 min. The result position array of
the tracker shows that the average distance between data from two
adjacent positions sampled from the same pose was 1.2 cm (maximum
1.6 cm). The difference is smaller than the offset distance we set to the
user’s joints (from 4 cm to 6 cm, depending on the thickness of the
user’s joints). Therefore, the effect of the tracker noise is negligible.
The whole system was running at 90 fps for each eye. Participants
said they felt the presence of the belt holding the tracker in place, but
their movement was not affected by the belt. Before each participant
started the experiment, we measured the inter-pupillary distance (IPD)
for them with a millimeter scale and adjusted the IPD of the headset to
meet their best visual setting.

4.3. User study design

We designed a within-subjects virtual object-translating task. Partic-
ipants were asked to translate six solid white spheres on the ground to
the target locations (marked as green spheres) with specified precision,
as shown in Fig. 5. According to Fitts’ law (Graham and MacKenzie,
1996), there are trade-offs between accuracy and speed when ma-
nipulating objects. We set the precision to 0.02 m in the user study
according to the observation in the informal test. The task will not
be too challenging or too easy for the participants. Thus, the data
collected could be general and can reveal the characteristics of the
metaphor. There are eight target positions at different distances 𝑑 ∈
{0.5 m, 1 m, 2 m, 3 m, 4 m, 5 m, 5.5 m, 6 m} from the user. The maximum
touch distance in the virtual environment 𝐷 is set to 6.5 m. The design
6

𝑚

principle of the experimental scene is to ensure that the participants can
complete a trial (translating one sphere to the target position) within
20 s anywhere in the reachable manipulation space.

4.4. Procedure and metric

In the first stage, we aim to fit the 𝑡2 − 𝛽 model in Eq. (4). Eight
participants were asked to translate the six spheres on the ground
to the target positions with specified precision using our basic Big-
Arm method. When the manipulated sphere is less than 0.02 m from
the target, the system gives visual feedback to the user, turning the
manipulated sphere red.

In order to determine the coefficients, we need to collect the user’s
real arm motion data precisely. We used three HTC Vive trackers, bind-
ing on the user’s shoulder, elbow, and wrist joints. For each translation,
we record the coarse approach time 𝑡1 and the fine-tuning adjustment
time 𝑡2 of the six spheres, respectively, and calculate the average of 𝑡1
and 𝑡2. We also record the positions of the user’s shoulder, elbow, and
wrist with the three trackers and calculate the user’s real elbow angle
𝛽 when the user presses the button to end the 𝑡2 stage. After all eight
participants translated the spheres, we got 64 groups of measured data
to fit the 𝑡2 − 𝛽 model.

When the 𝑡2 − 𝑏𝑒𝑡𝑎 model is acquired, we complete the optimized
EEBA method and start the second stage. To reduce the impact of the
first stage, we commence the second stage tasks one week later. The
eight participants repeated the same translating sphere task procedure
using the EEBA method. The same time metrics (𝑡1 and 𝑡2) are also
collected. Then, we compare the performances of the two methods.

4.5. Results and discussion

For the fitting process, we plot the collected 𝑡2 and 𝛽 in the first
stage of the pilot user study in Fig. 6 top, fit the model illustrated
in Eq. (4) with the iterative least squares estimation method, and get
the coefficients {𝑒𝑖|𝑖 = 1, 2,… , 7} = {0.79, −2.48, 2.27, −23.95, 1.66,
1.84, 29.12}. The resulting mapping curve is shown in orange in Fig. 6
top. When the 𝑡2 time reaches its minimum value, the corresponding
real elbow angle 𝛽 is around 90 degrees. When 𝛽 deviates from 90
degrees, the 𝑡2 time increases. The fitted model was consistent with
our empirical assumptions. We can use the fitted model to calculate
the optimized elbow angle mapping function with Eq. (5). Coefficients 𝑎
and 𝑏 can be calculated with Eq. (6). Fig. 6, bottom shows one example
of the mapping function, with the coefficients 𝑎 = 2.85, 𝑏 = 0.06,
𝛽𝑚𝑎𝑥 = 𝛽′𝑚𝑎𝑥 = 150◦, 𝛽𝑚𝑖𝑛 = 50◦. 𝛽′𝑚𝑖𝑛 is calculated with Eq. (1): third row.
The derivative function of this curve is proportional to the reciprocal
function of the top curve.

In the second stage of the pilot user study, we compare the per-
formances of the basic Big-Arm and the optimized EEBA method. The
average 𝑡1 and 𝑡2 results for the two methods are shown in Fig. 7.
We analyzed the data with the one-way Repeated Measures ANOVA.
For the coarse approaching time 𝑡1 (blue and gray bars), the EEBA
method performs better at all distances, and the ANOVA results reveal
a statistically significant difference (𝐹 (1.0, 7.0) = 17.184, 𝑝 = 0.004, 𝜂2 =
0.711). A post-hoc analysis shows 𝑡1 for the EEBA method (𝑀 =
2.19, 𝑆𝐷 = 0.25) is significantly (𝑝 = .014) lower than that for the basic
Big-Arm method (𝑀 = 2.73, 𝑆𝐷 = 0.48). The results support H0-a. We
believe it is because the 𝛽 range for EEBA [50◦,150◦] is smaller than
the range for the basic Big-Arm, which means when participants rotate
their elbows at the same angle, the object sphere moves more. So, the
overall translating speed of the virtual spheres becomes faster.

We also compare the fine-tuning adjusting time 𝑡2 (orange and
yellow lines) for the basic Big-Arm and EEBA methods. The ANOVA test
shows that there was no significant difference across the eight distances
(𝐹 (1.0, 7.0) = 0.981, 𝑝 = 0.355, 𝜂2 = 0.123). We ran the Repeated Measure
ANOVA test on the experiment data to validate the second hypothesis
when target distance 𝑑 = 6 m. The results show a statistically significant
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Fig. 6. The top row shows the fitted curve of the model in Eq. (4). The bottom row
shows an example of the optimized mapping function.

Fig. 7. 𝑡1 and 𝑡2 time cost with the basic Big-Arm and the EEBA methods for different
target distances (d).

difference (𝐹 (1.0, 7.0) = 7.346, 𝑝 = 0.03, 𝜂2 = 0.512). A post hoc analysis
shows that when the target distance is 6 m, 𝑡2 for the EEBA method
(𝑀 = 2.52, 𝑆𝐷 = 0.84) is significantly (𝑝 = .018) lower than that for the
basic Big-Arm method (𝑀 = 6.24, 𝑆𝐷 = 1.37). The figure shows a more
gentle and uniform 𝑡2 time across the manipulation space. The results
support H0-b.

5. User study 1: Ergonomic validation

5.1. Overview and hypotheses

After finishing the model fitting, we acquired and applied the
EEBA method to the context of the target selection task. We aimed to
7

Fig. 8. The Ergonomic (left), Limits (middle), and Fixed (right) sphere layouts with
𝐷𝑚=6 m. The target pair of spheres are highlighted in green.

validate that the proposed EEBA method can increase comfort during
manipulation. Thus, we formulate the following hypotheses:

H1. The EEBA method can increase comfort for selecting objects
near the manipulation space boundary.

H2. It takes less time for users to finish the selection task with the
EEBA method.

5.2. Participants and apparatus

We recruited 16 participants (none of them participated in the last
user study), eight males and eight females between 21 and 29 years
old (𝑀 = 24.375, 𝑆𝐷 = 2.12), with normal vision (or corrected-to-
normal vision by wearing glasses). Six have experience using HMD VR
applications, and none reported balance disorders.

The system set up for this user study is the same as the system used
for the pilot user study. Also, we use three HTC Vive trackers bound on
the participant’s shoulder, elbow, and wrist and a handheld controller
to track the physical arm pose for further data analysis. Participants
reported their motion was not affected by the trackers and belts. Before
each participant started the experiment, we measured their IPD data
and adjusted the HMDs to meet their best setting. The whole system
was running at 90fps for each eye.

5.3. User study design

We used a 3 × 3 × 3 repeated measures within-subjects design.
The user study refers to the basic setting of the study used to evaluate
Erg-O (Montano Murillo et al., 2017; Wentzel et al., 2020). We tested
three manipulation methods (Go-Go (Poupyrev et al., 1996), Linear
Offset (LO) (Li et al., 2018), and our EEBA) with three target layouts
(ergonomic, limits of reach, and world fixed) and three maximum
distances (𝐷𝑚 = 2 m, 6 m, and 10 m) in the target selection task.

Participants were asked to select the highlighted spheres as quickly
as possible. At the beginning of the task, several blue spheres (15 to
24) were floated in front of the participants. Then, two spheres were
randomly highlighted as green, and the participant selected the green
spheres using the controller. Once the selection is correct, the green
sphere turns back to blue, and then the system randomly highlights
two more spheres as green for the participant to select, and the process
is repeated 30 times. The accompanying video demonstrates this task.

Target Layouts The spheres were placed according to the three
target layouts used in the Erg-O study (Montano Murillo et al., 2017):
(1) with the Ergonomic layout, 15 spheres were placed in a 5 × 3
grid, 0.4𝐷𝑚 away from the participant’s torso, on the Center and
Bent plane (Hincapié-Ramos et al., 2014). (2) with the Limits layout,
24 spheres were placed in front of the participant, distributed on a
spherical surface with a radius of 𝐷𝑚, a pitch of 30◦, and a yaw of 60◦.
(3) with the Fixed layout, 24 spheres were placed in two 4 × 3 grids
(one 0.3𝐷𝑚 away, the other 0.9𝐷𝑚 away), spanning across the entire
reachable space of the virtual big arm (𝐷𝑚 × 0.6𝐷𝑚 × 0.6𝐷𝑚). Detailed
layout setting is shown in Fig. 8.
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Fig. 9. (a) Time, (b) Comfort, (c) Physical Path Length, and (d) Virtual Path Length by METHOD, LAYOUT and 𝐷𝑚. Error bars are standard deviations. Significant differences are
denoted with asterisks (all compared to the EEBA methods).
1

5.4. Procedure and metrics

This user study has three independent variables: METHOD with
three types (Go-Go, Linear Offset, EEBA), LAYOUT with three levels
(Ergonomic, Limits, Fixed) and 𝐷𝑚 with three levels (2 m, 6 m, 10 m).
Each participant completed a 27-condition task (all combinations of the
three variables) according to the order of the METHOD determined by
the balanced Latin square. Each condition contained 30 trials.

The performance of all participants was quantified with the follow-
ing objective metrics: Time, Comfort, Physical Path Length, and Virtual
Path Length, the same as Montano Murillo et al. (2017), Wentzel et al.
(2020). Time is the period of a trial-selecting the first and second
highlighted target spheres. Comfort is measured with the RULA score
of the ergonomic measurement system (McAtamney and Corlett, 1993).
When selecting the target sphere, we recorded the participant’s shoul-
der, elbow, and wrist positions to calculate the RULA score. The lower
the RULA score, the lower the participant’s exposure to ergonomic risk
factors. Physical Path Length (or Virtual Path Length) is the ratio of the
traveling distance of the participant’s physical hand (or virtual hand)
divided by the distance between two highlighted target spheres.

After each condition, we asked the participant to self-report the
comfort, ease of reach, overstretching, and sense of control on a scale from
1 to 7, the same as that in the Erg-O study (Montano Murillo et al.,
2017).

5.5. Results

For each participant and each condition, the outliers of the 30 trial
data points were first filtered out (±3 standard deviation). In total, we
removed 416 trials (3.2%). The distribution normality assumption was
verified using the Shapiro–Wilk test.

In the following analysis, we applied a two-way repeated measures
ANOVA with Holm–Bonferroni corrected post-hoc pairwise t-test unless
noted otherwise. We verified that sphericity (Mauchly test) was not
violated with any measures. The results are shown in Fig. 9 and
Appendix A.
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5.5.1. Time
Fig. 9, column (a) and Table A.3 give the Time metric results. The

main effects of METHOD on Time is statistically significant, spheticity
assumed 𝐹 (2, 42) = 123.46, 𝑝 < .001, 𝜂2𝑝 = 0.86. This effect was qualified
by a significant 𝑀𝐸𝑇𝐻𝑂𝐷 ×𝐷𝑚 interaction effect (𝐹 (4, 42) = 3.89, 𝑝 =
.011, 𝜂2𝑝 = .27) and a significant 𝑀𝐸𝑇𝐻𝑂𝐷 × 𝐿𝐴𝑌𝑂𝑈𝑇 interaction
effect (𝐹 (4, 42) = 49.79, 𝑝 < .001, 𝜂2𝑝 = .70). The result of post-hoc
pair-wise comparisons shows that the EEBA method reduces the time
cost significantly (𝑝 < .032) except for one condition (𝐿𝐴𝑌𝑂𝑈𝑇 =
𝐸𝑟𝑔𝑜𝑛𝑜𝑚𝑖𝑐,𝐷𝑚 = 6 m), under which the time reduction (6.6%) is not
significant (𝑝 = .097) compared with the LO method.

5.5.2. Comfort (RULA)
Fig. 9, column (b) and Table A.4 show the results of the Comfort

metric. The main effects of METHOD on Comfort is statistically sig-
nificant, spheticity assumed 𝐹 = (2, 42) = 103.66, 𝑝 < .001, 𝜂2𝑝 = .83.
This effect was qualified by a significant 𝑀𝐸𝑇𝐻𝑂𝐷 × 𝐷𝑚 interaction
effect (𝐹 (4, 42) = 4.66, 𝑝 = .02, 𝜂2𝑝 = .31) and a significant 𝑀𝐸𝑇𝐻𝑂𝐷 ×
𝐿𝐴𝑌𝑂𝑈𝑇 interaction effect (𝐹 (4, 42) = 77.63, 𝑝 < .001, 𝜂2𝑝 = .79).
The result of pair-wise comparisons shows that for layout Limits, the
EEBA method reduces the RULA scores significantly (all 𝑝 < .001),
which means better comfort performance. For layout Fixed, the EEBA
method reduces the RULA scores significantly (𝑝 < .001) except for
two conditions (𝐷𝑚 = 2 m,𝑀𝐸𝑇𝐻𝑂𝐷 = 𝐿𝑂, 𝑝 = 0.1 and 𝐷𝑚 =
10 m,𝑀𝐸𝑇𝐻𝑂𝐷 = 𝐿𝑂, 𝑝 = 0.11) However, for layout Ergonomic, the
EEBA method increases the RULA scores.

5.5.3. Physical Path Length
Fig. 9, column (c) and Table A.5 show the results of the Physical

Path Length metric. The main effects of METHOD on Physical Path
Length is statistically significant, spheticity assumed 𝐹 = (2, 42) =
328.04, 𝑝 < .001, 𝜂2𝑝 = .94. This effect was qualified by a significant
𝑀𝐸𝑇𝐻𝑂𝐷 ×𝐷𝑚 interaction effect (𝐹 (4, 42) = 22.51,p< 0.001, 𝜂2𝑝 = .68)
and a significant 𝑀𝐸𝑇𝐻𝑂𝐷 × 𝐿𝐴𝑌𝑂𝑈𝑇 interaction effect (𝐹 (4, 42) =
09.39, 𝑝 < .001, 𝜂2 = .84). The result of pair-wise comparisons shows
𝑝
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Table 2
Pairwise Wilcoxon signed-rank test results for self-report metric. Asterisks denote
statistical significance.

Question Method Avg. ± std. Z p

Comfort
Go-Go 4.06 ± 1.00 −6.51a <0.001*
LO 4.32 ± 0.94 −5.58a <0.001*
EEBA 5.10 ± 0.75

Ease of Reach
Go-Go 4.03 ± 1.17 −6.80a <0.001*
LO 4.68 ± 1.21 −5.30a <0.001*
EEBA 5.29 ± 0.82

Overstretching
Go-Go 4.42 ± 0.88 −6.52b <0.001*
LO 3.75 ± 1.36 −5.27b <0.001*
EEBA 3.03 ± 0.99

Sense of Control
Go-Go 3.79 ± 1.10 −6.26a <0.001*
LO 4.13 ± 1.19 −4.92a <0.001*
EEBA 4.78 ± 1.11

a Based on negative ranks.
b Based on positive ranks.

that the EEBA method reduces the Physical Path Length significantly
𝑝 < .011) except for three conditions (𝐿𝐴𝑌𝑂𝑈𝑇 = 𝐸𝑟𝑔𝑜𝑛𝑜𝑚𝑖𝑐,𝐷𝑚 =
2𝑚&𝐿𝐴𝑌𝑂𝑈𝑇 = 𝐸𝑟𝑔𝑜𝑛𝑜𝑚𝑖𝑐,𝐷𝑚 = 6𝑚&𝐿𝐴𝑌𝑂𝑈𝑇 = 𝐸𝑟𝑔𝑜𝑛𝑜𝑚𝑖𝑐,𝐷𝑚 =
10𝑚), under which the reduction (6.7% & 1.12% & 0.48%) is not
significant (𝑝 = .16&𝑝 = .76&𝑝 = .93) compared with the LO method.

5.5.4. Virtual Path Length
Fig. 9, column (d) and Table A.6 shows the results of the Vir-

tual Path Length metric. The main effects of METHOD on Virtual Path
Length is statistically significant, spheticity assumed 𝐹 = (2, 42) =
248.79, 𝑝 < .001, 𝜂2𝑝 = .92. This effect was qualified by a significant
𝑀𝐸𝑇𝐻𝑂𝐷 ×𝐷𝑚 interaction effect (𝐹 (4, 42) = 19.83,p< 0.001, 𝜂2𝑝 = .65)
and a significant 𝑀𝐸𝑇𝐻𝑂𝐷 × 𝐿𝐴𝑌𝑂𝑈𝑇 interaction effect (𝐹 (4, 42) =
36.30, 𝑝 < .001, 𝜂2𝑝 = .63). The result of pair-wise comparisons shows that
compared to the Go-Go method, the EEBA method reduces the Virtual
Path Length significantly for all conditions (𝑝 < .001). Compared to the
LO method, the reducing effects show significant reductions (𝑝 < .013)
when 𝐿𝐴𝑌𝑂𝑈𝑇 ∈ 𝐿𝑖𝑚𝑖𝑡𝑠, 𝐹 𝑖𝑥𝑒𝑑&𝐷𝑚 ∈ 2 m, 10 m. For other conditions,
the reductions are not significant.

5.5.5. Self-report
Table 2 shows the results of the self-report questionnaire for each

measure. Pairwise Wilcoxon signed-rank tests found the EEBA method
shows statistically significant improvements compared to the Go-Go
and LO methods.

5.6. Discussion

The primary goal of this user study is to collect data for evaluating
the comfort performance of our EEBA method relative to the Go-Go
and LO methods. According to the results, the proposed EEBA method
shows comparable performance and provides statistically significant
improvements in comfort for Limits and Fixed layouts.

5.6.1. Time
For all conditions, the EEBA method reduces trial times. The re-

ductions are apparent for Limits and Fixed layouts. We believe it is
because the participants with our EEBA method can easily pre-plan the
translating path and control the movement of the virtual hand. On the
other hand, due to the newly mapped smaller elbow angle range, the
participants can translate the virtual hand for a certain distance with
lesser physical arm movement, leading to faster manipulation and less
trial time. The Time metric results support H2.

When 𝐷𝑚 increases from 2 m to 10 m, the trial time increases for
both Limits and Fixed layout, while the increase is not apparent for
Ergonomic layout. For Limits and Fixed, when 𝐷𝑚 increases, the distances
between the sphere and the target location also increase. However, the
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distances for Ergonomic layout stay the same. Since the sphere’s size
remains the same, the Time and Index of Difficulty (ID) of the tasks
exhibit a proportional relationship with the value of 𝐷𝑚, confirming
that the experimental results adhere to Fitts’ Law.

5.6.2. Comfort
For Limits and Fixed layouts, our EEBA method reduces the RULA

scores significantly. However, for Ergonomic layout, the RULA scores of
our EEBA method are larger compared to the Go-Go and LO methods.
The EEBA’s optimized mapping function readjusts the elbow angle
to the new range [50◦, 150◦]. This design avoids the extreme arm
extension pose for the target sphere in the Limits layout, thus increasing
the comfort. This result supports H1. For Fixed layout, the RULA scores
of our EEBA method are also lower, which indicates better comfort
for target spheres whose positions are placed throughout the reachable
space. Regarding the Ergonomic layout, our EEBA method yields higher
scores. Our EEBA method is more suitable for distant object manipula-
tion. The RULA scores of all three methods in the Ergonomic layout are
much smaller than the other two, meaning the participants are more
comfortable in this distance range. However, our EEBA method has
higher RULA values than the other two. As a result, our EEBA approach
reduces the comfort level in close-range manipulation in exchange for
a significant increase in distant object manipulation.

5.6.3. Physical Path Length
The general reduction for all conditions verifies that our EEBA

method can reduce physical movements. This is caused by the smaller
real mapping elbow angle range illustrated in Section 3.2.1. The same
virtual hand movement requires less physical hand movement.

5.6.4. Virtual Path Length
The reduction shows that the participants can better control virtual

hand movements with the EEBA method. We attribute the reduced
virtual path length to the intuitive path pre-planning and familiar
virtual arm control.

5.6.5. Self-reports
The responses regarding the four metrics are more favorable for

our EEBA method than the Go-Go and LO methods. The improvement
effects are significant, which shows better comfort performance and
adaptability of the proposed EEBA method in VR.

6. User study 2-efficiency evaluation

6.1. Overview and hypotheses

The second user study aims to explore the efficiency performance
of our EEBA method. In this study, we investigated the influence of
various factors on target translating performance. We formulate the
following hypotheses:

H3. The EEBA method can reduce the translating time during the
coarse approaching phase.

H4. The EEBA method can reduce the adjusting time during the
fine-tuning phase.

6.2. Participants and apparatus

We recruited 16 participants, eight males, and eight females (none
participated in the last two user studies), ranging from 20 to 30 years
old (𝑀 = 23.69, 𝑆𝐷 = 2.31), with normal vision (or corrected-to-
normal vision by wearing glasses). Thirteen had used immersive HMD
VR applications before, and none reported balance disorders.

The system setup is the same as in the previous user studies. In this
user study, only one tracker is used to capture the elbow joint position.
No participant reported being uncomfortable with the tracker. Before
each participant started the experiment, we measured their IPD data
and adjusted the HMDs to meet their best setting. The whole system

was running at 90 fps for each eye.
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Fig. 10. The indoor VR room used in user study 2 for 𝐷𝑚=6 m. The left figure shows
the top view and the right figure shows the view of the participant. The rooms used
for 𝐷𝑚 = 2 m and 𝐷𝑚=10 m have similar layouts but different sizes. Please refer to
the accompanying video.

6.3. User study design

We used a 4 × 3 × 3 repeated measures within-subject design.
The task for the participants is to translate four white virtual objects
(sphere, bunny, monkey, and Lucy statue) to their target locations
(highlighted as green) within particular precision in three indoor VR
rooms of different sizes (Fig. 10). The three rooms’ furthest object
(monkey) distances are 1.92 m, 5.76 m, and 9.87 m.

We compared four methods: Ray-casting (RC) (Bowman and Hodges,
1997), Go-Go (Poupyrev et al., 1996), LO (Li et al., 2018), and EEBA
method, under three max distance conditions (𝐷𝑚=2 m, 6 m, and 10 m)
with three precision requirements (𝑝𝑟𝑒𝑐. = 0.05 m, 0.03 m, and 0.02 m).

Participants were told to translate these objects to their target
locations within three specified precision requirements as quickly as
possible. When the distances between the objects and their targets are
smaller than the precision value, the objects’ color changes to red. Then
participants can press a button to place the objects. After all four objects
are successfully placed, the task is complete. If participants could not
successfully place the objects, they were allowed to give up after several
attempts.

6.4. Procedure and metrics

This user study has three independent variables: METHOD with four
types (RC, Go-Go, LO, EEBA), PRECISION with three levels (0.05 m,
0.03 m, 0.02 m) and 𝐷𝑚 with three levels (2 m, 6 m, 10 m). Each
participant completed all combinations of the three variables, with the
order of METHOD determined by a balanced Latin square.

The task is completed when all four objects are placed in their target
locations. The performance was quantified with four objective metrics:
𝑡1, 𝑡2, Approach Path Length, and Fine-tuning Length. 𝑡1 is the total time
cost for all four objects during the approaching stage. 𝑡2 is the total
time cost for all four objects during the final position adjustment stage.
𝑡1 and 𝑡2 for each object are collected the same way as in Section 4.
Approach Path Length is the ratio of the total length of the virtual
object trajectories during the coarse approaching stage for the four
objects, divided by the total distance between the four objects and their
corresponding target locations. Fine-tuning Length is the total absolute
length of the virtual object trajectories during the fine-tuning stage for
the four objects.

We also evaluated the user task load and usability performance with
the standard NASA TLX questionnaire (Hart, 2006; Hart and Staveland,
1988), and various aspects of usability measured with the usability
questionnaire (Kim et al., 2015). When participants completed one
condition, they were asked to complete the questionnaires.

We filtered the data with three times the standard deviation and
removed 12 (2.1%) outliers. The distribution normality assumption
was verified using the Shapiro–Wilk test. Then, we analyzed the data
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with a two-way repeated measures ANOVA with Holm–Bonferroni
corrected post-hoc pairwise t-test unless noted otherwise. We verified
that sphericity (Mauchly test) was not violated with any measures.
Fig. 11 and Appendix B gives the results for the four methods.

6.5. Results

6.5.1. 𝑡1 time
Fig. 11, column (a) and Table B.7 give the 𝑡1 metric results. The

main effects of METHOD on 𝑡1 is statistically significant, spheticity
assumed 𝐹 (3, 63) = 660.02, 𝑝 < .001, 𝜂2𝑝 = .97. The main effects of PRECI-
SION on 𝑡1 is also statistically significant, spheticity assumed 𝐹 (2, 42) =
149.45, 𝑝 < .001, 𝜂2𝑝 = .88. The effects were qualified by a significant
METHOD ×𝐷𝑚 interaction effect (𝐹 (6, 63) = 145.86, 𝑝 < .001, 𝜂2𝑝 = .93), a
significant PRECISION ×𝐷𝑚 interaction effect (𝐹 (4, 42) = 100.94, 𝑝 <
.001, 𝜂2𝑝 = .91) and a significant PRESISION × METHOD interaction
effect (𝐹 (6, 63) = 94.29, 𝑝 < .001, 𝜂2𝑝 = .82).

The result of post-hoc pairwise comparisons shows that compared
to the RC method, the EEBA method reduces 𝑡1 time significantly for
all precision and 𝐷𝑚 levels (𝑝 < .001). Compared to the Go-Go method,
for 𝐷𝑚 = 6 m and 𝐷𝑚 = 10 m, the EEBA method shows significant
𝑡1 reductions (𝑝 < .026). However, for 𝐷𝑚 = 2 m, the reduction is not
statistically significant when the precision level equals 0.03 m (𝑝 = .28).
When the precision level equals 0.05 m and 0.02 m, the result shows
significant reductions (𝑝 < .001). Compared to the LO method, the EEBA
method reduces the 𝑡1 time significantly (𝑝 < 0.03) except for conditions
(𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 = 0.03, 𝐷𝑚 = 2 m, 𝑝 = .54, 𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 = 0.05, 𝐷𝑚 =
10 m, 𝑝 = .145 and 𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 = 0.02, 𝐷𝑚 = 10 m, 𝑝 = .07).

6.5.2. 𝑡2 time
Fig. 11, column (b) and Table B.8 give the 𝑡2 metric results. The

main effects of METHOD on 𝑡2 is statistically significant, spheticity
assumed 𝐹 (3, 63) = 164.47, 𝑝 < .001, 𝜂2𝑝 = .89. The main effects of PRECI-
SION on 𝑡2 is also statistically significant, spheticity assumed 𝐹 (2, 42) =
214.90, 𝑝 < .001, 𝜂2𝑝 = .91. The effects were qualified by a significant
METHOD ×𝐷𝑚 interaction effect (𝐹 (6, 63) = 64.44, 𝑝 < .001, 𝜂2𝑝 = .86),
a significant PRECISION ×𝐷𝑚 interaction effect (𝐹 (4, 42) = 98.82, 𝑝 <
.001, 𝜂2𝑝 = .90) and a significant PRESISION × METHOD interaction
effect (𝐹 (6, 63) = 23.80, 𝑝 < .001, 𝜂2𝑝 = .53).

The post hoc pairwise comparison results show that the EEBA
method reduces 𝑡2 time significantly (𝑝 < 0.03) except for conditions
(𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 = 0.05 m, 𝐷𝑚 = 6 m, 𝑝 = 0.35 and 𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑆𝑂𝑁 =
0.03, 𝐷𝑚 = 6 m, 𝑝 = 0.15). Compared to the Go-Go method, the EEBA
method reduces 𝑡2 time significantly for all precision and 𝐷𝑚 levels
(𝑝 < .003). Compared to the LO method, the EEBA method significantly
(𝑝 < .002) reduces the 𝑡2 time when 𝐷𝑚 = 6 m and 𝐷𝑚 = 10 m. When
𝐷𝑚 = 2 m, the 𝑡2 time reductions of our EEBA method are not significant
when the precision level equals 0.05 m (𝑝 = .77) and 0.03 m (𝑝 = .06).
The reduction is significant when the precision level reaches 0.02 m
(𝑝 = .002).

6.5.3. Approach Path Length
Fig. 11, column (c) and Table B.7 give the Approach Path Length

metric results. The main effects of METHOD on Approach Path Length
is statistically significant, spheticity assumed 𝐹 (3, 63) = 463.39, 𝑝 <
.001, 𝜂2𝑝 = .96. The main effects of PRECISION on Approach Path Length
is also statistically significant, spheticity assumed 𝐹 (2, 42) = 11.30, 𝑝 <
.001, 𝜂2𝑝 = .35. The effects were qualified by a significant METHOD ×𝐷𝑚
interaction effect (𝐹 (6, 63) = 51.68, 𝑝 < .001, 𝜂2𝑝 = .83), a significant
PRECISION ×𝐷𝑚 interaction effect (𝐹 (4, 42) = 18.28, 𝑝 < .001, 𝜂2𝑝 = .64)
and a significant PRESISION × METHOD interaction effect (𝐹 (6, 63) =
45.04, 𝑝 < .001, 𝜂2𝑝 = .68).

The post hoc pairwise comparison results show that the EEBA
method reduces Approach Path Length significantly for all precision and
𝐷𝑚 levels (𝑝 < .001) compared to the RC and the Go-Go method.
Compared to the LO method, the EEBA method significantly (𝑝 < .028)
reduces Approach Path Length except for conditions (𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 =
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Fig. 11. (a) 𝑡1, (b) 𝑡2, (c) Approach Path Length (APL), and (d) Fine-tuning Path Length (FPL) by METHOD, PRECISION and 𝐷𝑚. Error bars are standard deviations. Significant
differences are denoted with asterisks (all compared to the EEBA methods). The × mark indicates the task is not completed under the corresponding condition.
0.05 m, 𝐷𝑚 = 2 m, 𝑝 = 0.99 and 𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑆𝑂𝑁 = 0.03, 𝐷𝑚 = 2 m, 𝑝 =
0.37).

6.5.4. Fine-tuning Path Length
Fig. 11, column (d) and Table B.7 give the Fine-tuning Path Length

metric results. The main effects of METHOD on FPL is statistically
significant, spheticity assumed 𝐹 (3, 63) = 44.82, 𝑝 < .001, 𝜂2𝑝 = .68.
The main effects of PRECISION on FPL is also statistically significant,
spheticity assumed 𝐹 (2, 42) = 10.16, 𝑝 = .001, 𝜂2𝑝 = .33. The effects were
qualified by a significant METHOD ×𝐷𝑚 interaction effect (𝐹 (6, 63) =
4.84, 𝑝 = .004, 𝜂2𝑝 = .32), a significant PRECISION ×𝐷𝑚 interaction effect
(𝐹 (4, 42) = 5.18, 𝑝 = .005, 𝜂2𝑝 = .33). While the PRECISION × METHOD
interaction effect is not significant (𝐹 (6, 63) = 2.03, 𝑝 = .12, 𝜂2𝑝 = .09).

The post hoc pairwise comparison results show that the EEBA
method reduces FPL significantly for all precision and 𝐷𝑚 levels (𝑝 <
.038) compared to the other three methods.

6.5.5. Task load and usability
Fig. 12 shows the task load scores for all conditions. The overall

ANOVA test reveals significant differences between the four methods
(𝐹 (3, 69) = 36.71, 𝑝 < .001, 𝜂2𝑝 = .62). Post-hoc analysis reveals that the
task load of the EEBA method is significantly smaller than that of the
RC, Go-Go, and LO methods.

Fig. 13 shows the results in terms of usability perception. Detailed
scores are presented, including Intuitive (IN), Effective (EF), Accuracy
(AC), Naturalness (NA), Satisfaction (SA), and Easiness (EA).

For IN, The overall ANOVA test reveals significant differences be-
tween the four methods (𝐹 (3, 69) = 11.60, 𝑝 < .001, 𝜂2𝑝 = .59). Post-hoc
analysis reveals that the EEBA method shows overall improvements in
all detailed scores. The improving effects are statistically significant
(𝑝 < .024), except for NA scores on the Go-Go (𝑝 = .09) and LO (𝑝 = .42)
methods, SA score on the LO (𝑝 = .20) method and EA on the LO
(𝑝 = .16) method.

6.6. Analysis and discussion

The results show that the proposed EEBA method shows signifi-
cant improvements in efficiency compared to the RC, Go-Go, and LO
methods.
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Fig. 12. Box plots for task load scores of the four methods and three 𝐷𝑚 values.
Asterisks denote statistical significance.

Fig. 13. Detailed usability subscores for the four methods. Compared with the EEBA,
significant differences are denoted with asterisks.
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6.6.1. 𝑡1 time and Approach Path Length
From the results of 𝑡1 and Approach Path Length, our EEBA method

as a shorter virtual object translating trajectory, which we attribute
o the fact that the participant’s expected results for his actual manipu-
ation are similar to those produced by our method, and his perceived
ranslating in the virtual space is more consistent with his actual trans-
ating, thus consuming less time and manipulating more efficiently. At
he same time, the newly mapped smaller elbow angle range enables a
aster approach speed and less 𝑡1 time. This result supports H3.

6.6.2. 𝑡2 time and Fine-tuning Path Length
From the 𝑡2 and Fine-tuning Path Length results, our EEBA method

significantly improves the efficiency performance, especially for large
scenarios. We believe the reason for the improvements is as follows.
First, the proposed EEBA method allows participants to control the
target’s movement in relatively more ergonomic arm poses with low
fatigue, making the adjustment sustainable. On the other hand, the link
structure of the virtual arm functions the same way as the real arm, and
participants can easily predict the reflected virtual hand movement of
their controlling moves, leading to effective manipulation. The reduced
𝑡2 time supports H4.

6.6.3. Task load and usability
Our EEBA method’s lower task load score is due to its ergonomic

improvement, provided by the optimized elbow angle mapping func-
tion. Participants can reach all the target objects distributed around the
reachable space with a relatively comfortable arm pose, making their
arms less prone to fatigue. We believe the increased usability scores are
due to the EEBA method’s intuitive arm-like structure. Participants felt
that it was easy to understand how to use it.

6.6.4. Discussion
We also believe that proprioception is one of the reasons for the bet-

ter performance of our method. When the user controls their physical
arm to extend or bend, the virtual arm reflects the same motions. Due
to the similarity between the virtual arm and the physical arm motion,
the signals detected by the proprioceptors (located within muscles,
tendons, and joints) will be integrated with image frames of virtual arm
motion captured by the visual sensory. This mechanic offers human-like
control feedback, and it will strengthen confidence and easiness when
operating the virtual target object.

7. Conclusion, limitations, and future work

We have proposed an efficient and ergonomic Big-Arm metaphor
for manipulating distant objects in VR. Our method prolongs the arm
limbs and maps the real and virtual elbow angles with an optimized
elbow angle mapping function fitted from a pilot user study. We also
evaluate the performance of our EEBA method in two subsequent
user studies. Compared to the state-of-the-art methods, the proposed
EEBA method proved more efficient and ergonomic in distant virtual
object manipulation tasks. Furthermore, according to the perception
questionnaire, our EEBA method shows better task load and usability
performance.

Our approach facilitates full-range object manipulation within the
virtual arm’s reachable distance. Employing an optimized elbow angle
mapping technique, we enhance and equalize the user’s efficiency in
object manipulation. In essence, our method enables users to easily
manipulate scattered target objects in the scene without needing to
relocate. It is important to note that while the arm’s length is not
infinitely extendable, excessively long arms may compromise maneu-
verability. For expansive scenes, our method can be supplemented
with existing user relocation techniques. By adopting our approach,
users benefit from an extended operating range, reducing the need for
frequent relocating and thereby enhancing operational efficiency and
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reducing workload within the scene.
Besides, our EEBA method supports easy and direct selection and
translation and can be easily integrated with common rotation. A
simple implementation is conducted by mapping the rotation operation
with the controller’s rotation. Please refer to the accompanying video
for details and intuitive effects. In future work, we plan to delve deeper
into investigating the impact of the EEBA method on rotational ma-
nipulation, further enhancing our understanding of its comprehensive
usability. Our method is better suited for fast object placement in large
scenes. This is especially true for scenes where objects exist to move
across significant depths. The method is also suitable for manipulating
objects floating in mid-air because the linkage design, like a real arm,
allows the user to quickly construct the motion path of a virtual hand
approaching an object in the air.

One limitation of our method is that we use a tracker to track users’
elbows accurately. Before implementing the system with a tracker, we
also implemented the EEBA method for user arm motion estimation
based on inverse kinematics (Parger et al., 2018), which does not
require any additional tracker but does not perform robustly in user
study (please refer to the accompanying video). This also shows that
our EEBA method can be very easily integrated with feasible arm-
tracking systems. Future work could consider integrating more stable
and feasible arm-tracking methods (Spanlang et al., 2010; Jiang et al.,
2016; Winkler et al., 2022; Yi et al., 2022). The limited participant
count in our user studies poses a challenge, particularly given the
multitude of conditions examined. To address this limitation in future
research, employing G-power to estimate the necessary participant
numbers will enhance the robustness and validity of our findings.

Another limitation is that we currently check the participants’ mo-
bility by asking them directly. However, such questioning only provides
subjective feedback and does not provide objective corroboration that
the arm mobility is similar for each participant. The final limitation
pertains to the current display of the virtual arm, which is partially
obscured by the floor. We tried the transparent display of the ob-
scured part of the arm in the pre-design phase. However, from some
participants’ feedback, they were disturbed to various degrees, so we
abandoned the transparent scheme. Of course, our preliminary trans-
parency scheme is just a simple test. In future work, many available
schemes, such as changing transparency, color changing of the occluded
part, coloring according to the depth of the arm position, etc., are worth
trying.

Another future work could extend our EEBA metaphor in augmented
reality by wearing a haptic glove. This glove allows the user to manip-
ulate the distant virtual object in the mixed environment and gives the
user haptic feedback when he/she touches the distant real object.
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Appendix A. Detailed test results for User Study 1

Tables A.3, A.4, A.5, and A.6 show the detailed results of the User
Study 1. In addition to a two-way repeated measures ANOVA with
Holm–Bonferroni corrected posthoc pairwise t-test, we also quantified

the effect size for each metric using Cohen’s d (Cohen, 2013). The 𝑑
Table A.3
Time results for each condition. Asterisks denote statistical significance.
𝐷𝑚 Layout Method Avg. ± std. (𝑀𝑖 −𝑀𝐸𝐸𝐵𝐴)∕𝑀𝑖 p Cohen’s d Effect size

2 m

Ergonomic
Go-Go 0.86 ± 0.19 40.1% < .001* 2.48 Huge
LO 0.57 ± 0.03 10.73% 0.032* 1.28 Very Large
EEBA 0.51 ± 0.06

Limits
Go-Go 1.14 ± 0.19 46.2% < .001* 3.52 Huge
LO 0.86 ± 0.08 28.8% < .001* 2.72 Huge
EEBA 5.10 ± 0.75

Fixed
Go-Go 1.08 ± 0.19 38.4% < .001* 3.14 Huge
LO 0.88 ± 0.19 23.9% 0.013* 1.52 Very Large
EEBA 0.61 ± 0.1

6 m

Ergonomic
Go-Go 0.87 ± 0.29 44.5% 0.003* 1.93 Very Large
LO 0.52 ± 0.05 6.6% 0.097 0.95 Large
EEBA 0.48 ± 0.01

Limits
Go-Go 1.80 ± 0.16 42.7% < .001* 5.96 Huge
LO 1.40 ± 0.23 26.5% 0.001* 2.10 Huge
EEBA 1.03 ± 0.09

Fixed
Go-Go 1.88 ± 0.11 38.5% < .001* 8.62 Huge
LO 1.83 ± 0.15 36.9% < .001* 6.09 Huge
EEBA 1.15 ± 0.04

10 m

Ergonomic
Go-Go 1.12 ± 0.33 56.6% < .001* 2.69 Huge
LO 0.59 ± 0.08 17.8% 0.01* 1.58 Very Large
EEBA 0.48 ± 0.05

Limits
Go-Go 2.35 ± 0.37 40.3% < .001* 3.52 Huge
LO 1.99 ± 0.23 29.6% < .001* 3.42 Huge
EEBA 1.40 ± 0.09

Fixed
Go-Go 2.48 ± 0.23 31.1% < .001* 4.70 Huge
LO 2.53 ± 0.20 32.3% < .001* 5.60 Huge
EEBA 1.71 ± 0.05
Table A.4
Comfort (RULA score) results for each condition. Asterisks denote statistical significance.
𝐷𝑚 Layout Method Avg. ± std. (𝑀𝑖 −𝑀𝐸𝐸𝐵𝐴)∕𝑀𝑖 p Cohen’s d Effect size

2 m

Ergonomic
Go-Go 3.69 ± 0.12 −3.39% 0.232 0.67 Medium
LO 3.46 ± 0.25 −10.11% 0.017* 1.45 Very Large
EEBA 3.81 ± 0.23

Limits
Go-Go 4.83 ± 0.03 22.5% < .001* 12.28 Huge
LO 4.65 ± 0.21 19.6% < .001* 5.30 Huge
EEBA 3.74 ± 0.12

Fixed
Go-Go 4.25 ± 0.04 12.5% < .001* 7.00 Huge
LO 3.81 ± 0.09 2.41% 0.10 0.94 Large
EEBA 3.61 ± 0.1

6 m

Ergonomic
Go-Go 3.60 ± 0.34 −11.0% 0.008* 1.64 Very Large
LO 3.83 ± 0.30 −4.58% 0.15 0.82 Large
EEBA 4.00 ± 0.00

Limits
Go-Go 4.95 ± 0.04 18.6% < .001* 28.65 Huge
LO 4.97 ± 0.01 19.0% < .001* 66.94 Huge
EEBA 4.03 ± 0.02

Fixed
Go-Go 4.44 ± 0.06 10.7% < .001* 8.64 Huge
LO 4.14 ± 0.03 4.1% < .001* 4.15 Huge
EEBA 3.97 ± 0.05

10 m

Ergonomic
Go-Go 4.00 ± 0.20 −2.9% 0.31 0.57 Medium
LO 3.62 ± 0.40 −13.9% 0.01* 1.57 Very Large
EEBA 4.12 ± 0.21

Limits
Go-Go 4.95 ± 0.08 17.1% < .001* 11.4 Huge
LO 5.00 ± 0.01 17.9% < .001* 17.65 Huge
EEBA 4.10 ± 0.07

Fixed
Go-Go 4.58 ± 0.02 14.2% < .001* 10.92 Huge
LO 4.03 ± 0.12 2.38% 0.11 0.93 Large
EEBA 3.93 ± 0.08



International Journal of Human - Computer Studies 188 (2024) 103273J. Wu et al.
Table A.5
Physical Path Length results for each condition. Asterisks denote statistical significance.
𝐷𝑚 Layout Method Avg. ± std. (𝑀𝑖 −𝑀𝐸𝐸𝐵𝐴)∕𝑀𝑖 p Cohen’s d Effect size

2 m

Ergonomic
Go-Go 0.45 ± 0.04 28.8% < .001* 3.39 Huge
LO 0.34 ± 0.02 6.7% 0.16 0.79 Medium
EEBA 0.32 ± 0.04

Limits
Go-Go 0.36 ± 0.01 18.9% < .001* 5.17 Huge
LO 0.35 ± 0.01 17.5% < .001* 4.76 Huge
EEBA 0.29 ± 0.02

Fixed
Go-Go 0.37 ± 0.01 18.8% < .001* 3.94 Huge
LO 0.36 ± 0.01 16.8% < .001* 3.30 Huge
EEBA 0.30 ± 0.02

6 m

Ergonomic
Go-Go 0.24 ± 0.04 46.2% < .001* 3.88 Huge
LO 0.13 ± 0.01 1.12% 0.76 0.17 Very Small
EEBA 0.13 ± 0.01

Limits
Go-Go 0.12 ± 0.01 20.6% < .001* 9.57 Huge
LO 0.12 ± 0.01 18.2% < .001* 4.96 Huge
EEBA 0.09 ± 0.01

Fixed
Go-Go 0.13 ± 0.001 20.6% < .001* 8.00 Huge
LO 0.13 ± 0.004 23.1% < .001* 7.27 Huge
EEBA 0.10 ± 0.004

10 m

Ergonomic
Go-Go 0.16 ± 0.03 46.9% < .001* 3.71 Huge
LO 0.087 ± 0.009 0.48% 0.93 0.05 Very Small
EEBA 0.086 ± 0.008

Limits
Go-Go 0.08 ± 0.001 23.7% < .001* 9.52 Huge
LO 0.07 ± 0.004 19.32% < .001* 4.06 Huge
EEBA 0.06 ± 0.003

Fixed
Go-Go 0.08 ± 0.003 20.7% < .001* 6.57 Huge
LO 0.08 ± 0.001 24.3% < .001* 10.49 Huge
EEBA 0.06 ± 0.002
Table A.6
Virtual Path Length results for each condition. Asterisks denote statistical significance.
𝐷𝑚 Layout Method Avg. ± std. (𝑀𝑖 −𝑀𝐸𝐸𝐵𝐴)∕𝑀𝑖 p Cohen’s d Effect size

2 m

Ergonomic
Go-Go 1.48 ± 0.07 27.2% < .001* 6.05 Huge
LO 1.09 ± 0.06 1.5% 0.65 0.25 Small
EEBA 1.08 ± 0.06

Limits
Go-Go 1.44 ± 0.01 24.9% < .001* 14.80 Huge
LO 1.15 ± 0.03 5.9% 0.001* 2.16 Huge
EEBA 1.08 ± 0.03

Fixed
Go-Go 1.49 ± 0.06 23.1% < .001* 6.66 Huge
LO 1.20 ± 0.03 4.4% 0.013* 1.53 Very Large
EEBA 1.15 ± 0.03

6 m

Ergonomic
Go-Go 1.94 ± 0.48 39.8% < .001* 2.25 Huge
LO 1.19 ± 0.03 1.6% 0.39 0.47 Small
EEBA 1.17 ± 0.05

Limits
Go-Go 1.64 ± 0.24 30.0% < .001* 2.79 Huge
LO 1.19 ± 0.06 4.0% 0.15 0.81 Large
EEBA 1.14 ± 0.06

Fixed
Go-Go 1.69 ± 0.16 28.4% < .001* 3.84 Huge
LO 1.24 ± 0.03 2.6% 0.27 0.62 Medium
EEBA 1.21 ± 0.07

10 m

Ergonomic
Go-Go 2.86 ± 0.33 52.6% < .001* 6.23 Huge
LO 1.43 ± 0.14 5.1% 0.24 0.66 Medium
EEBA 1.36 ± 0.07

Limits
Go-Go 1.93 ± 0.15 36.9% < .001* 6.58 Huge
LO 1.30 ± 0.05 6.6% 0.001* 2.15 Huge
EEBA 1.22 ± 0.03

Fixed
Go-Go 2.08 ± 0.21 34.4% < .001* 4.72 Huge
LO 1.42 ± 0.02 4.1% < .001* 2.58 Huge
EEBA 1.37 ± 0.03
14
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values were translated to qualitative effect size estimates of Huge (𝑑 >
2.0), Very Large (2.0 > 𝑑 > 1.2), Large (1.2 > 𝑑 > 0.8), Medium (0.8 >
𝑑 > 0.5), Small (0.5 > 𝑑 > 0.2), and Very Small (0.2 > 𝑑 > 0.01). The
statistical analysis was performed using the SPSS software (IBM, n.d.).

Appendix B. Detailed test results for User Study 2

Table B.7, Table B.8, Table B.9, and Table B.10 show the detailed
results of the User Study 2. The same as Appendix A, in addition to a
15
two-way repeated measures ANOVA with Holm–Bonferroni corrected
posthoc pairwise t-test, we also quantified the effect size for each
metric using Cohen’s d (Cohen, 2013). The 𝑑 values were translated
to qualitative effect size estimates of Huge (𝑑 > 2.0), Very Large
2.0 > 𝑑 > 1.2), Large (1.2 > 𝑑 > 0.8), Medium (0.8 > 𝑑 > 0.5), Small
0.5 > 𝑑 > 0.2), and Very Small (0.2 > 𝑑 > 0.01). The statistical analysis
as performed using the SPSS software (IBM, n.d.).
Table B.7
𝑡1 results for each condition. Asterisks denote statistical significance.
𝐷𝑚 Precision Method Avg. ± std. (𝑀𝑖 −𝑀𝐸𝐸𝐵𝐴)∕𝑀𝑖 p Cohen’s d Effect size

2 m

0.05 m

RC 13.88 ± 2.30 61.7% < .001* 4.95 Huge
Go-Go 7.60 ± 0.92 30.0% < .001* 2.59 Huge
LO 7.03 ± 1.43 24.3% 0.02* 1.46 Very Large
EEBA 5.32 ± 0.84

0.03 m

RC 15.88 ± 3.23 56.7% < .001* 3.48 Huge
Go-Go 7.98 ± 1.98 13.9% 0.28 0.60 Medium
LO 7.57 ± 2.40 9.3% 0.54 0.34 Small
EEBA 6.87 ± 1.73

0.02 m

RC 13.92 ± 3.76 54.5% < .001* 2.69 Huge
Go-Go 9.40 ± 0.83 32.6% < .001* 2.73 Huge
LO 8.58 ± 0.89 26.1% 0.003* 1.96 Very Large
EEBA 6.34 ± 1.35

6 m

0.05 m

RC 32.98 ± 2.38 76.8% < .001* 12.43 Huge
Go-Go 11.55 ± 3.84 33.8% 0.026* 1.33 Very Large
LO 9.64 ± 0.95 20.7% 0.014* 1.50 Very Large
EEBA 7.64 ± 1.62

0.03 m

RC 34.03 ± 1.43 77.6% < .001* 25.86 Huge
Go-Go 10.36 ± 1.45 26.6% < .001* 2.66 Huge
LO 8.85 ± 0.90 14.1% 0.003* 1.92 Very Large
EEBA 7.61 ± 0.18

0.02 m

RC 34.87 ± 2.96 71.4% < .001* 10.33 Huge
Go-Go 13.36 ± 2.33 25.3% 0.008* 1.66 Very Large
LO 12.36 ± 2.00 19.3% 0.03* 1.29 Very Large
EEBA 9.97 ± 16.89

10 m

0.05 m

RC 53.13 ± 6.59 63.2% < .001* 6.89 Huge
Go-Go 23.07 ± 2.09 15.4% 0.006* 1.73 Very Large
LO 21.22 ± 2.07 8.0% 0.145 0.83 Large
EEBA 19.53 ± 2.01

0.03 m

RC 54.03 ± 11.28 60.4% < .001* 4.03 Huge
Go-Go 27.13 ± 1.53 21.1% < .001* 3.34 Huge
LO 24.98 ± 2.38 14.3% 0.008* 1.66 Very Large
EEBA 21.41 ± 1.88

0.02 m

RC 54.87 ± 8.54 56.4% < .001* 4.71 Huge
Go-Go – – – – –
LO 27.67 ± 3.59 13.6% 0.07 1.04 Large
EEBA 23.90 ± 3.67
Table B.8
𝑡2 results for each condition. Asterisks denote statistical significance.
𝐷𝑚 Precision Method Avg. ± std. (𝑀𝑖 −𝑀𝐸𝐸𝐵𝐴)∕𝑀𝑖 p Cohen’s d Effect size

2 m

0.05 m

RC 7.37 ± 0.91 55.5% < .001* 5.31 Huge
Go-Go 5.16 ± 0.52 36.5% < .001* 3.36 Huge
LO 3.38 ± 0.68 3.1% 0.77 0.16 Very Small
EEBA 3.28 ± 0.60

0.03 m

RC 8.42 ± 1.20 36.1% < .001* 2.25 Huge
Go-Go 7.92 ± 1.20 32.1% 0.003* 1.88 Very Large
LO 6.77 ± 1.06 20.1% 0.06 1.07 Large
EEBA 5.38 ± 1.49

0.02 m

RC 9.25 ± 0.98 29.8% < .001* 2.77 Huge
Go-Go 9.42 ± 1.17 31.1% < .001* 2.68 Huge
LO 8.56 ± 1.05 24.1% 0.002* 2.01 Huge
EEBA 6.50 ± 1.01

(continued on next page)
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Table B.8 (continued).
𝐷𝑚 Precision Method Avg. ± std. (𝑀𝑖 −𝑀𝐸𝐸𝐵𝐴)∕𝑀𝑖 p Cohen’s d Effect size

6 m

0.05 m

RC 5.24 ± 1.28 20.4% 0.35 0.51 Medium
Go-Go 22.00 ± 10.87 81.0% < .001* 2.25 Huge
LO 15.88 ± 3.23 73.7% < .001* 3.96 Huge
EEBA 4.17 ± 2.66

0.03 m

RC 11.05 ± 2.60 31.2% 0.15 0.82 Large
Go-Go 32.34 ± 16.65 76.5% 0.002* 2.00 Very Large
LO 19.74 ± 6.38 61.5% 0.002* 2.06 Huge
EEBA 7.61 ± 5.35

0.02 m

RC 19.92 ± 3.40 38.4% 0.03* 1.28 Very Large
Go-Go 64.05 ± 21.42 80.8% < .001* 3.21 Huge
LO 41.15 ± 8.39 70.2% < .001* 3.57 Huge
EEBA 12.27 ± 7.76

10 m

0.05 m

RC 21.20 ± 1.06 42.1% < .001* 6.06 Huge
Go-Go 30.28 ± 2.78 59.5% < .001* 7.70 Huge
LO 22.00 ± 0.88 44.2% < .001* 6.88 Huge
EEBA 12.27 ± 1.79

0.03 m

RC 33.95 ± 6.84 38.8% < .001* 2.34 Huge
Go-Go 64.45 ± 7.27 67.8% < .001* 7.42 Huge
LO 38.33 ± 4.15 45.8% < .001* 4.28 Huge
EEBA 20.77 ± 4.05

0.02 m

RC 53.33 ± 2.98 49.9% < .001* 8.15 Huge
Go-Go – – – – –
LO 43.94 ± 10.07 39.2% < .001* 2.28 Huge
EEBA 26.72 ± 3.53
Table B.9
Approach Path Length results for each condition. Asterisks denote statistical significance.
𝐷𝑚 Precision Method Avg. ± std. (𝑀𝑖 −𝑀𝐸𝐸𝐵𝐴)∕𝑀𝑖 p Cohen’s d Effect size

2 m

0.05 m

RC 25.88 ± 3.23 68.1% < .001* 5.49 Huge
Go-Go 15.73 ± 2.77 47.5% < .001* 2.50 Huge
LO 8.28 ± 1.64 0.2% 0.99 0.007 Very Small
EEBA 8.26 ± 3.19

0.03 m

RC 25.87 ± 2.96 68.5% < .001* 5.91 Huge
Go-Go 14.92 ± 2.85 45.4% < .001* 2.30 Huge
LO 9.58 ± 2.73 15.0% 0.37 0.50 Small
EEBA 8.14 ± 3.04

0.02 m

RC 30.30 ± 4.69 71.6% < .001* 6.03 Huge
Go-Go 17.40 ± 3.22 50.5% < .001* 3.30 Huge
LO 12.83 ± 4.11 32.9% 0.028* 1.31 Very Large
EEBA 8.61 ± 1.96

6 m

0.05 m

RC 46.98 ± 4.62 60.9% < .001* 8.28 Huge
Go-Go 25.07 ± 3.28 26.8% < .001* 2.60 Huge
LO 22.38 ± 1.13 17.9% < .001* 2.92 Huge
EEBA 18.37 ± 1.58

0.03 m

RC 46.98 ± 9.80 61.6% < .001* 4.17 Huge
Go-Go 24.57 ± 2.07 26.6% < .001* 4.25 Huge
LO 21.4 ± 1.88 15.8% < .001* 2.39 Huge
EEBA 18.03 ± 0.67

0.02 m

RC 44.45 ± 9.29 60.4% < .001* 4.06 Huge
Go-Go 24.74 ± 1.68 28.8% < .001* 5.06 Huge
LO 24.12 ± 1.42 26.9% < .001* 5.17 Huge
EEBA 17.63 ± 1.07

10 m

0.05 m

RC 86.98 ± 9.80 55.8% < .001* 6.33 Huge
Go-Go 64.45 ± 7.27 40.4% < .001* 4.26 Huge
LO 50.87 ± 5.76 24.5% < .001* 2.38 Huge
EEBA 38.42 ± 4.66

0.03 m

RC 98.33 ± 8.77 56.7% < .001* 6.37 Huge
Go-Go 80.99 ± 10.67 47.4% < .001* 3.94 Huge
LO 62.09 ± 10.21 31.4% 0.002* 2.05 Huge
EEBA 42.58 ± 8.74

0.02 m

RC 102.69 ± 9.80 46.5% < .001* 5.80 Huge
Go-Go – – – – –
LO 67.05 ± 8.68 18.1% 0.010* 1.60 Very Large
EEBA 54.90 ± 6.29
16
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Table B.10
Fine-tuning Path Length (m) results for each condition. Asterisks denote statistical significance.
𝐷𝑚 Precision Method Avg. ± std. (𝑀𝑖 −𝑀𝐸𝐸𝐵𝐴)∕𝑀𝑖 p Cohen’s d Effect size

2 m

0.05m

RC 3.23 ± 0.56 76.8% < .001* 5.46 Huge
Go-Go 2.86 ± 1.08 73.9% < .001* 2.65 Huge
LO 1.75 ± 0.53 57.2% < .001* 2.27 Huge
EEBA 0.75 ± 0.32

0.03 m

RC 4.42 ± 2.75 76.6% 0.005* 1.73 Very Large
Go-Go 4.02 ± 1.95 74.3% 0.001* 2.14 Huge
LO 3.00 ± 1.21 65.6% 0.001* 2.22 Huge
EEBA 1.03 ± 0.30

0.02 m

RC 6.27 ± 2.37 43.7% 0.013* 1.51 Very Large
Go-Go 8.77 ± 1.35 59.8% < .001* 4.47 Huge
LO 5.81 ± 1.36 39.2% 0.003* 1.93 Very Large
EEBA 3.53 ± 0.96

6 m

0.05 m

RC 4.32 ± 2.72 81.2% 0.005* 1.80 Very Large
Go-Go 6.84 ± 6.12 88.2% 0.021* 1.39 Very Large
LO 4.84 ± 3.55 83.2% 0.010* 1.59 Very Large
EEBA 18.37 ± 1.58

0.03 m

RC 8.17 ± 5.08 85.7% 0.003* 1.94 Very Large
Go-Go 7.09 ± 3.78 83.5% 0.001* 2.20 Huge
LO 5.40 ± 2.34 78.3% < .001* 2.51 Huge
EEBA 1.17 ± 0.45

0.02 m

RC 8.85 ± 4.41 46.7% 0.037* 1.23 Very Large
Go-Go 13.27 ± 3.99 64.5% < .001* 2.78 Huge
LO 7.15 ± 1.93 34.0% 0.027* 1.32 Very Large
EEBA 4.72 ± 1.73

10 m

0.05 m

RC 9.07 ± 3.71 50.5% 0.011* 1.57 Very Large
Go-Go 11.21 ± 7.01 60.0% 0.028* 1.31 Very Large
LO 8.59 ± 3.45 47.8% 0.015* 1.49 Very Large
EEBA 4.49 ± 1.83

0.03 m

RC 8.46 ± 4.54 48.1% 0.038* 1.23 Very Large
Go-Go 13.84 ± 4.99 68.3% < .001* 2.61 Huge
LO 9.52 ± 4.06 53.9% 0.006* 1.72 Very Large
EEBA 4.39 ± 1.18

0.02 m

RC 13.02 ± 3.33 49.2% < .001* 2.23 Huge
Go-Go – – – – –
LO 10.78 ± 2.49 38.6% 0.006* 1.73 Very Large
EEBA 6.62 ± 2.33
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